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Abstract
Statistics of nodal lines for eigenmodes u in the stadium are computed, and
compared with previously derived formulae for monochromatic boundary-
adapted Gaussian random waves in the plane. These modes and random waves
satisfy the Helmholtz equation, and mixed boundary conditions in which a
linear combination of u and its normal derivative must vanish. For the density of
nodal lines and the excess density of nodal lines arising from the boundary, the
Gaussian model accurately describes the statistics of the billiard eigenfunctions.

PACS numbers: 02.50.–r, 03.65.Sq, 05.45.Mt

1. Introduction

Our purpose here is to test a recent extension [1] (section 2) of the Gaussian random-wave
model for eigenstates of classically chaotic quantum billiards [2–8]. Previously [9], the
Gaussian model was generalized to incorporate Dirichlet and Neumann boundary conditions.
The extension [1] was a further generalization to include mixed boundary conditions. It
revealed some surprising boundary-related phenomena, whose appearance in quantum billiard
states, reported here, gives strong support to the random-wave model.

In quantum billiards (section 3), eigenstates un(r) with wavenumber kn in a domain D of
the plane r = {x, y}, with boundary ∂D, satisfy

∇2un + k2
nun = 0 in D, kun cos a + n · ∇un sin a = 0 in ∂D. (1)

Here n is the inward normal, and a (with −π/2 < a � π/2) parametrizes the boundary
condition. Dirichlet conditions correspond to a = 0 and Neumann to a = π/2.

In the boundary-adapted Gaussian random model, using scaled coordinates R = {X, Y } =
{kx, ky}, the domain is approximated as the half-space Y � 0, so the boundary is the straight
line Y = 0. Members of the ensemble of random waves, whose statistics are to be compared
with those of the modes (1), are [1]

u(r, a) = 2√
J

J∑
j=1

[sin(Y sin θj ) − tan a sin θj cos(Y sin θj )]√
1 + tan2 a sin2 θj

cos(X cos θj + φj ). (2)
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This is a superposition of J (�1) plane waves satisfying the Helmholtz equation and boundary
condition (1) for Y � 0, travelling in directions θ j equidistributed on [0, π ] with phases φj

equidistributed on [0, 2π ].

2. Summary of theory [1]

The nodal density ρL(Y ; a) to be calculated, normalized so that ρL(Y, a) → 1 for Y → ∞, is
defined by

mean nodal line length per unit area ≡ k

2
√

2
ρL(Y, a). (3)

The average here is over the ensemble parameters θ j and φj, or equivalently (since the ensemble
is ergodic) over long thin strips between Y and Y + dY. Equation (3) incorporates the previously
derived bulk density k/(2

√
2) for nodal lines of isotropic Gaussian random functions far from

boundaries [10].
The theory (expressed in a slightly simpler form than in [1] and [9]) involves the following

averages, derived using more general techniques developed earlier [10]:

B(Y, a) ≡ 〈u2〉 = 1 − 2

π

∫ π/2

0
dθ Ref (θ, Y, a)

DX(Y, a) ≡
〈(

∂u

∂X

)2
〉

= 1

2
− 2

π

∫ π/2

0
dθ(cos θ)2 Ref (θ, Y, a) (4)

K(Y, a) ≡
〈
u

∂u

∂Y

〉
= 2

π

∫ π/2

0
sin θ Imf (θ, Y, a),

where

f (θ, Y, a) = exp(2iY sin θ)

(
1 − i tan a sin θ

1 + i tan a sin θ

)
. (5)

The result is that the nodal line density is

ρL(Y, a) = 2

π

√
2DX

B
E

(
B(B − 1) + K2

BDX

)
, (6)

where E denotes the complete elliptic integral (the definition is that of Mathematica [11]).
The long-range behaviour of the nodal density is

ρL(Y, a) ≈ 1 +
cos

(
2Y − 2a − 1

4π
)

√
πY

− 1

32πY
(Y � 1). (7)

The Y−1 dependence of the leading non-oscillatory correction implies that when the excess
ρL − 1 is integrated to give the total excess nodal line length Lexc(Y, a) in a strip of height Y,
the result diverges as Y → ∞. Thus

Lexc(Y, a) ≡
∫ Y

0
dη[ρL(η, a) − 1] = sin

(
2Y − 2a − 1

4π
)

2
√

πY
− log Y

32π
+ CL(a) (Y � 1),

(8)

where the numerically determined constant CL(a) is shown in figure 12 of [1]. This divergence
is surprising because it indicates a sense in which the effect of the boundary conditions
persists far from ∂D; moreover, the leading-order (logarithmic) divergence is independent of
the boundary-condition parameter a.
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(a)

(b)

Figure 1. Pictures of the state k = 83.89 for a = +π/4. (a) Contour map of intensity u2(x, y) (the
dark contour loops enclose regions of high intensity); (b) Nodal lines, showing ‘ghost lines’ [1] at
a distance ky ∼ π/4 from the boundary.

The other unanticipated feature of the theory is sharp peaks in ρL(Y, a) near Y = a for
(0 < a � π/2). In [1], these were discussed in detail and interpreted as ghosts of the boundary
nodal line for a = 0.

In (7) and (8) the condition Y � 1 refers to the theoretical Gaussian-random superposition
in the presence of a single straight boundary, and requires some qualification in the present
application to quantum billiards. Y represents the shortest distance to ∂D, so Y/k should be
much smaller than the local radius of curvature of ∂D, R, say. In fact we expect the theory
of (7) and (8) to break down well before Y = kR, because the nodal density could feel the
curvature and other non-local features of ∂D.

3. Stadium billiard

For D we chose the quarter stadium (figure 1) consisting of the unit square augmented by a
quarter circle of radius 1. Thus the area A and perimeter P are

A = 1 + 1
4π, P = 4 + 1

2π. (9)

For boundary-condition parameters a = −π/4, 0, +π/4, +π/2, we calculated eigenstates
in the range 83 < k < 85. According to the leading-order Weyl rule, this interval includes
approximately 47 states, between the 978th and the 1026th. We used a mixed-boundary-
condition adaptation of the numerical technique of Heller [6], in which k is varied so as to
fit a superposition of N plane waves to the boundary conditions at N points on ∂D. It is easy
to create combinations of the type (2) satisfying the mixed boundary conditions exactly on
both straight sides of the quarter stadium; we chose N = 320 such combinations and fitted
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(a) (b)

(c) (d )

Figure 2. Nodal line density ρL(Y, a) for (a) a = −π/4, (b) a = 0, (c) a = +π/4, (d ) a =
+π/2. Full curves: theory [1] of section 2; bold dots: billiard eigenstates. The inset in (c) is a
magnification of the peak near Y = π/4, arising from the ghost lines.

them to 320 points on the quarter circle and its connected straight segment with unit length;
this corresponds to about nine boundary points per wavelength. A criterion for accuracy
was the mean-square deviation from the boundary conditions at 3000 other boundary points.
In this way, we captured about 74% of the states (about 35 states) in the chosen k interval for
each value of a except a = 0, for which we captured about 36% of the states (17 states). Our
ensemble included some ‘bouncing-ball’ states, to which the theory does not apply (because
the directions of plane waves in the modal superposition are concentrated near the normal to
the straight sides); nevertheless, we included them, because they were too few (about 10%) to
significantly affect the comparison with theory.

Figure 1 shows a typical such state, for a = +π/4. This case is chosen to show the ghost
nodal lines (figure 1(b)) and to illustrate how this feature is hard to discern in the intensity plot
of figure 1(a).

For an individual eigenstate and a given value of a, the nodal line density involves a sum
over intersections of nodal lines with the shrunken image of ∂D consisting of the locus of
points at distance Y/k from the closest point on ∂D. To get ρL(Y, a), each intersection in the
sum must be weighted by 1/cosγ , where γ is the angle between the normal n and the nodal
line. As mentioned at the end of section 2, this procedure makes sense only if Y/k is less than
the minimum radius of curvature of ∂D; in the present case, this implies Y < 42.5. Finally,
the resulting densities were averaged over all eigenfunctions in the sample. For M states, the
number S of independent samples for each Y near the boundary can be estimated as M times
the number of half-wavelengths around the boundary, this gives S ∼ 5000, except for a = 0
where the smaller number of eigenstates gives S ∼ 2500. Therefore, we can expect fluctuations
1/

√
S of a few per cent.
Figure 2 shows how accurately the billiard eigenstates fit the Gaussian random theory

for the nodal line density ρL(Y, a), even deep inside D and for the ghost nodal lines (inset
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(a) (b)

(c) (d )

Figure 3. As figure 2, for the excess nodal line density Lexc(Y, a). The dashed curves show the
non-oscillatory part of the asymptotic formula (8), with constants CL(−π/4) = −0.507, CL(0) =
−0.948, CL(+π/4) = 1.049, CL(+π/2) = −0.006.

in figure 2(c)). The more discriminating test of the excess density Lexc(Y, a) is shown in
figure 3. Except for figure 3(c), corresponding to a = +π/4, the fits are excellent for Y less
than about 20, but degrade for larger Y, corresponding to points deep inside D, where the theory
can hardly be expected to apply, with Lexc becoming smaller than the theoretical predictions.
We conjecture that the poorer fit for a = +π/4 results from a failure to capture all the density
in the ghost peak.

4. Discussion

The theory that we have been comparing with numerical experiments is analogous to the
boundary correction [12] to the Weyl rule for the eigenvalue counting function. The rather
good agreement gives further strong support to the Gaussian random-wave hypothesis for the
eigenfunctions of classically chaotic quantum systems.

Our tests have been based on averaging over an ensemble of states. However, the
Gaussian random hypothesis is more discriminating, in the sense that it should also apply
to asymptotically high individual chaotic states. This test is still lacking; to get comparable
accuracy to that reported here would require numerically computing the nodal statistics of
single states near the 30 000th.

Just as the boundary correction to the Weyl rule is the first term of an infinite (divergent)
series [13], so we expect the boundary corrections considered here to be the first in a series of
corrections to the nodal line density statistics, with successive contributions capturing more
subtle features of ∂D. A start has been made [14] on the next correction, which incorporates
the curvature of ∂D, at least for Dirichlet and Neumann boundary conditions. It would be
interesting to establish the structure of the full series of corrections, involving higher powers
of curvature and rates of change of curvature.
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